

LASER ELECTRO-OPTICS AND ELECTRONICS COMPONENTS

EKSMA Optics is a manufacturer of precision laser components, used in high power lasers, laser systems and various other optical instruments. Utilizing more than 30 years of expertise in the fields of lasers and optics EKSMA Optics has proven experience providing custom solutions and also offering a wide range of catalogue products for fast off-the-shelf delivery.

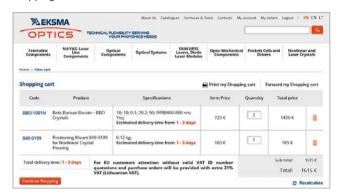
Product range in this catalogue includes DKDP, BBO and KTP Pockels cells and their high voltage drivers with power supplies, laser diode drivers, laser synchronization modules, ultrafast electro-optical laser pulse picking systems and heaters of nonlinear crystals.

All components provided by EKSMA Optics are subject to quality testing and certification in Quality Control laboratory. Through stringent inspection procedures, quality control assessments and commitment to new advanced technologies, we are continuously improving and delivering exceptional quality.

EKSMA Optics is an ISO 9001:2015 certified company.

PRICES

MEKSMA


OPTICS

Prices are indicated F.C.A. Vilnius, Lithuania and are exclusive of any taxes, duties or freight. Quantity as well as research application discounts are subject to quote. EKSMA Optics reserves the right to change prices without prior written notice.

PRODUCT DELIVERY TIME

Most of the standard products provided in catalogue are available for fast-off-the shelf delivery. Delivery time of the stock products can be estimated on the website. Estimated product delivery time is displayed on each product page. Search in our e-shop using product code.

If delivery term is indicated as "Request", please add the required items to the shopping cart and choose "Official Quotation". Our sales team will contact you soon and provide the estimated delivery time for the shopping cart.

SHIPPING

EKSMA Optics works with the biggest express freight carriers (UPS, DHL, FedEx). Other freight forwarders are available on request. If not specified by customer, the default freight forwarder is DHL or UPS (depending on the country). Final shipping costs are subject to quote depending on individual order. EKSMA Optics reserves the right to change the prices without prior written notice depending on freight forwarder's pricing. Shipping charges are prepaid and added as a separate item to the invoice.

CERTIFICATE OF ORIGIN

All items shown in this catalogue are of Lithuanian Origin (EU). Certificate of Origin is available under request.

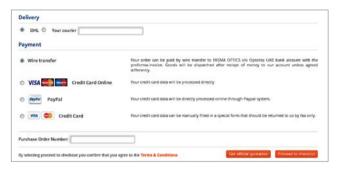
ORDERING

Purchase orders to EKSMA Optics can be placed using our e-shop, by e-mail or by fax. Customs paperwork and fees if any applied must be handled by customers.

COMPANY DETAILS

Optolita uab (legal company name)

Mokslininku str. 11, LT-08412 Vilnius, Lithuania


Company Code: 300624547; VAT No.: LT100002802516

Tel: +370 5 272 99 00: Fax: +370 5 272 92 99

E-mail: info@eksmaoptics.com

PAYMENT OPTIONS

Standard payment options include online credit card payments (using PayPal or PaySera services) or wire transfer.

WIRE TRANSFER DETAILS

Account number (IBAN)	LT16 7044 0600 0577 4220
Bank name	AB SEB Bankas
Bank address	Gedimino Ave. 12,
bank address	LT-01103 Vilnius, LITHUANIA
SWIFT Code	CBVILT2X
Beneficiary	OPTOLITA UAB

Please note that customer's bank transfer fee associated with payment service should be paid by customer.

RETURN POLICY

30 days customer satisfaction warranty covers all standard products. Please contact EKSMA Optics if you are not satisfied with the product to arrange a refund. EKSMA Optics does not cover any costs associated with shipping.

WARRANTY

All products are guaranteed to be free from defects in material and workmanship for a period of 1 year after delivery. EKSMA Optics does not assume liability from installation, labour or consequential damages.

Table of Contents

POCRELS CELLS	4
KTP Pockels cells / PCK	4
KD*P Pockels cells / PC / D-compact / D-mini	5
BBO Pockels cells / PCB	7
Mounting stage for Pockels cells of Ø25.4 mm / PM1	8
Mounting stage for Pockels cells of Ø35 mm / HPR	8
POCKELS CELLS DRIVERS	9
Cavity dumping & pulse picking Pockels cell drivers / DPS / DPD / DPBX / DP-SP	9
OEM version unipolar drivers	11
Encased version unipolar drivers	12
Encased version bipolar drivers	13
Short pulse drivers	14
High voltage Pockels cell driver / DPB	15
High repetition rate Pockels cell driver	
for Q-switching of diode pumped lasers / DQ	17
Pockels cells driver for Q-switching of flashlamp pumped lasers / DQF	18
HV POWER SUPPLIES	19
High voltage power supply / PS	19
High voltage power supply / HVS100	20
LASER DIODE DRIVERS	21
Universal laser diode driver / uniLDD	21
LASER SYNCHRONIZATION MODULES	24
Synchronization module and pulse delay generator / SY4000	24
ULTRAFAST PULSE PICKING SYSTEMS	26
Digital synchronization and delay pulse generator / pMaster 4.0H	26
Pulse picker / FP1	27
Pulse picker / MP1	27
Ultrafast pulse picker / UP1	27
CRYSTAL OVENS	29
Temperature controller with oven / TC2 / CO1	29
Round oven for nonlinear crystals / HEATPOINT	30
Oven for nonlinear crystals / CH8	31

Pockels Cells

Pockels cell is used to change the polarization state of laser light when high voltage is applied to it. The key element of Pockels cell is electro-optical crystal, which produces or changes birefringence induced by the electric field. Induced birefringence or refractive index modification in the material by electric field is called electro-optic effect or Pockels

effect. Electro-optic effect is observed only in non-centrosymmetric crystals.

Typical applications of Pockels cells are Q-switching of laser cavity, laser cavity dumping, pulse picking, light coupling into and from regenerative amplifier, continuous wave laser beam chopping.

PCK

KTP POCKELS CELLS

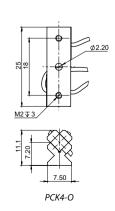
PCK series KTP Pockels cells developed at EKSMA Optics are based on specially grown high resistivity KTP crystals. KTP crystals have better optical homogeneity and higher damage threshold comparing to RTP crystals. The outstanding feature is possibility to operate KTP Pockels cells at high duty cycles or even to keep at high voltage for the longer time.

FEATURES

- More than twice smaller HV requirement comparing to double BBO Pockels cells
- Operates at high duty cycles
- > Very low piezo-electric resonances
- > Standard apertures: 4×4, 6×6 and 8×8 mm

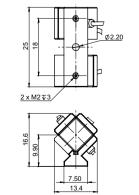
APPLICATIONS

- Q-switching for high repetition rate lasers1 kHz 1 MHz
- > Pulse picking of high repetition rate lasers


For drawings of other standard KTP Pockels Cells please visit www.eksmaoptics.com


PCK4

SPECIFICATIONS


MODEL	PCK4	PCK4-O	PCK6	PCK6-O	PCK8-O
Clear aperture diameter, mm	3.5		5.5		7.5
Crystal size (W×H×L), mm	4×4×10		6×6×10		8×8×10
Quantity of crystals	2		2		2
Half-wave voltage (@ 1064 nm), kV DC	<1.8		<2.5		<3.6
Capacitance, pF	4		<6		<8
Optical transmission, %	> 98				
Contrast ratio	>1:500				
Cell size, mm	Ø25.4×42.2	25×11.1×7.5	Ø25.4×42.2	25×13.8×10.6	25×16.6×13.4

PCK6-O

PCK8-O

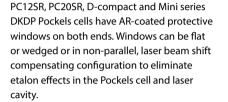
₩EKSMA OPTICS

PC • D-compact • D-mini

KD*P POCKELS CELLS

D-compact/12

D-compact/9


FEATURES

- Low absorption and high deuteration material
- High damage threshold dielectric AR coatings for different laser wavelengths
- Customized Pockels cells available upon request

APPLICATIONS

- Q-switching of flashlamp pumped high energy and low repetition rate diode pumped lasers
- > Pulse picking
- > Laser cavity dumping

KD*P (DKDP) is one of the electro-optical crystals used for Pockels cells. The most popular application of KD*P (DKDP) crystal based Pockels cell is Q-switching of laser cavity. DKDP Pockels cell can be used for lasers emitting in the range of 400 – 1100 nm. High energy and short output pulse formation during Q-switching of laser cavity process is realized with KD*P (DKDP) Pockels cell in the most of commercially available flashlamp pumped Nd:YAG and Ruby lasers, low repetition rate DPSS lasers like Nd:YAG, Nd:KGW, Nd:YLF, Nd:Glass and other lasers. Electro-optical KD*P (DKDP) crystals produced by EKSMA Optics have high damage threshold dielectric AR coatings $(LIDT > 10 \text{ J/cm}^2, 10 \text{ ns}, 10 \text{ Hz}, 1064 \text{ nm}),$ feature long lifetime without degradation of the coatings and show reliable operation with pulsed high energy lasers.

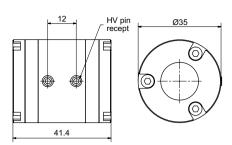
The rectangular shape PC5S, PC5D and PC10S DKDP Pockels cells are provided without protective windows and typically are used in hermetically sealed lasers.

DKDP Pockels cells provided with properly matched high voltage Pockels cell drivers allow the customers to expect the best results in their application.

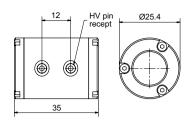
EKSMA Optics offers wide range of HV drivers for the Pockels cells and power supplies for the drivers which are presented in the next chapter of this catalogue.

PC10S

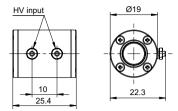
PC5D

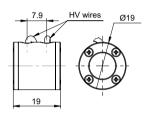

D-mini/9

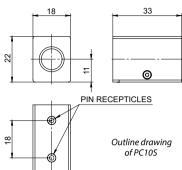
SPECIFICATIONS

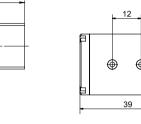

MODEL	PC20SR	PC12SR	D-compact/12	D-compact/9	D-mini/9	D-mini/8	PC10S	PC5S	PC5D
Clear aperture, mm	Ø 18	Ø 11	Ø 11	Ø8	Ø8	Ø7	9.5 × 9.5	4.5 × 4.5	4.5 × 4.5
Quantity of crystals	1	1	1	1	1	1	1	1	2
λ/4 @ 1064 nm voltage, kV DC	< 3.4	< 3.4	< 3.4	< 3.4	< 3.4	< 2.5	< 3.4	< 3.4	< 1.7
Capacitance, pF	< 10	6	6	6	6	3	4	1.5	3
Optical transmission		>97 % at 1064 nm							
LIDT of AR coatings		> 1 GW/cm² (10 J/cm²), 1064 nm, 10 Hz, 10 ns							
Contrast ratio	> 1:2000	> 1:2000	> 1:2000	> 1:2000	> 1:2000	> 1:2000	> 1:2000	> 1:2000	> 1:1000
Cell size, mm	Ø35×51	Ø35×41.4	Ø25.4×39	Ø25.4×35	Ø19×25.4	Ø19×19	22×18×33	18×14×25	23×16×52

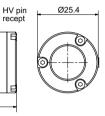
Specifications are subject to change without advance notice.


OPTICS


Outline drawing of PC12SR


Outline drawing of D-compact/9




Outline drawing of D-mini/9

Outline drawing of D-mini/8

Outline drawing of D-compact/12

RELATED PRODUCTS

PM1 mounting stage for Pockels cells of Ø25.4 mm

HPR mounting stage for Pockels cells of Ø35 mm

DPB series high voltage Pockels cell driver See page 15

DQF Pockels cells driver for Q-switching of flashlamp pumped lasers

See page 18

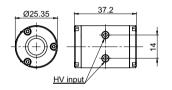
PCB

BBO POCKELS CELLS

PCB4D

BBO based Pockels cells can be useful at wavelengths from the UV to more than 2 μm. Low piezoelectric ringing makes these Pockels cells attractive for the control of high-power and high pulse repetition rate lasers. Fast switching electronic drivers properly matched to the cell are available for Q-switching, cavity dumping and other applications.

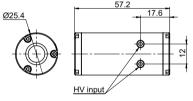
Pockels cells of PCB series are transverse field devices. Low electro-optical coefficient of BBO results in high operating voltages. The quarter-wave voltage is proportional to the ratio of electrode spacing and crystal length. As a result, smaller aperture devices have lower quarter-wave, however even for 2.5 mm aperture devices the quarter-wave voltage is as high as 4 kV @ 1064 nm.

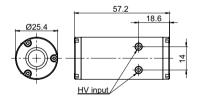

Double crystal design is employed to reduce required voltages and to allow operation in half-wave mode with fast switching times.

FEATURES

- Minimal piezoelectric ringing
- > Very low absorption and suitability for high power laser applications
- > Reliable design for operation up to 2 MHz HV pulse repetition rate
- > Broad transmission rate from 200 to 2000 nm

APPLICATIONS


- > High repetition rate Q-switching
- > Pulse picking at up to 2 MHz rate
- Laser cavity dumping
- > Pulses coupling into and from regenerative amplifier


PCB6.3S outline drawing

PCB3S, PCB4S outline drawing

PCB3D, PCB4D outline drawing

PCB6.3D outline drawing

SPECIFICATIONS

MODEL	PCB3S	PCB3D	PCB4S	PCB4D	PCB6.3S	PCB6.3D	PCB8D
WIODEL	PCB33	PCB3D	PCD43	PCD4D	PCD0.33	PCD0.3D	PCDOD
Clear aperture diameter, mm	2	.5	3	.5	5	.8	7
Quantity of crystals	1	2	1	2	1	2	2
λ/4 voltage (@ 1064 nm), kV DC	<3.5	<1.8	<4.6	<2.3	<7.5	<3.8	<4.6
Capacitance, pF	4	6	3	6	6	<8	<8
Optical transmission, %	> 98	>98	>98	>97	>98	>98	>98
Contrast ratio 1)	>1:1000	>1:500	>1:1000	>1:500	>1:1000	>1:500	>1:500
Dimensions mm	Ø25.4×37.2	Ø25.4×57.2	Ø25.4×37.2	Ø25 4×57 2	Ø25.4×42.2	Ø25.4×57.2	Ø35×64

¹⁾ Measured by crossed polarizers method.

All crystals are coated AR/AR @1064 nm. Other antireflection coatings are available on request. Damage threshold >5 J/cm² for 10 ns pulses at 1064 nm.

Specifications are subject to changes without advance notice.

RELATED PRODUCTS

PM1 mounting stage for Pockels cells of Ø25.4 mm See page 8

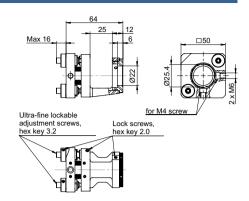
DQ high repetition rate Pockels cell driver for Q-switching

See page 17

DPD cavity dumping & pulse picking Pockels cell drivers

See page 9

PM1



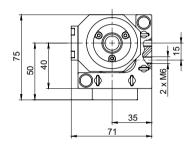
MOUNTING STAGE FOR POCKELS CELLS OF Ø25.4 mm

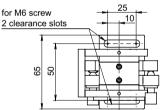
PM1 series mounting stage is designed for holding and positioning of Ø25.4 mm Pockels cells. The mount has ultra-fine thread lockable adjustment screws.

SPECIFICATIONS

MODEL	PM1
Adjusting angles, tilt and tip	±3.5°
Rotation along Z-axis	180°
Adjustment screw thread	M6×0.25
Screw sensitivity	0.5 μm

HPR


MOUNTING STAGE FOR POCKELS CELLS OF Ø35 mm



HPR series mounting stage is designed for holding and positioning of Ø35 mm Pockels cells. HPR stages with fine or ultra-fine screws are available upon request.

SPECIFICATIONS

MODEL	HPR-35
Suitable for pockels cells housing diameters, mm	Ø35
Adjusting angle along X and Y axis, deg	9
Rotating angle along Z-axis, deg	20
Beam high above breadboard, mm	50
Adjustment screw thread	M6×0.5
Screw sensitivity	1.5 μm

OPTICS

Pockels Cells Drivers

DPS • DPD • DPBX • DP-SP

CAVITY DUMPING & PULSE PICKING POCKELS CELL DRIVERS

Encased version of DPS/DPD series Pockels cell driver

FEATURES

- > Fast HV rise/fall time < 6 9.5 ns
- > HV pulse amplitude up to 7 kV
- > Pulse repetition rate up to 1 MHz
- Output pulse jitter <50 ps if trigger pulse rise time <0.5 ns

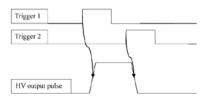


Fig. 1. Control timing charts for two-pulses controlled drivers

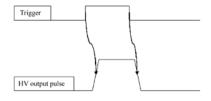


Fig. 2. Control timing charts for single pulse controlled drivers

DPD series Pockels cell drivers are designed for wide range of applications and operating modes – pulse selection, Q-switching, cavity dumping, CW beam chopping, burst modes, etc.

Different versions of the drivers are designed for variations of output voltage, repetition rate and rise/fall time of HV pulses. Those three parameters are mutually dependent: higher voltage means longer rise/fall time and higher repetition rate is limited by voltage. However, all drivers can operate at 1 MHz and even higher repetition rate in burst mode not exceeding specified average power. Connection diagram can be PUSH-PULL configuration using stand-alone driver for one Pockels cell.

Most of our DPS/DPD/DPBX/DP-SP series units are available in two versions: "open frame" which is ideal for OEM manufacturers incorporating drivers in their own laser systems or "Encased" in aluminum housings. Encasing of Pockels cell driver in aluminum housing helps to solve two problems: shields both humans and electronics from high voltage impact from operating Pockels cell driver, and protects driver itself from accidental potentially harmful external contact – ensuring safe operation of the driver. The Encased option is especially handy for researchers and custom product manufacturers who use these drivers during their own systems build-up.

Standard range drivers (unipolar and bipolar) operate safely with HV pulse duration from 100 ns to 5 µs. Moreover, HV pulse duration can be extended to infinity using pulse regeneration technique.

Short pulse drivers (DP-SP series) feature safe operation with HV pulse duration from 15 ns to \sim 1 μ s. However, pulse regeneration technique does not work with short pulse drivers

Short pulse DP-SP series drivers can be used for single pulse selection in pulse picker applications for higher repetition rate lasers generating up to 60 MHz pulse trains. While standard drivers can be used for single pulse selection in pulse picker applications for lasers generating up to 17 MHz pulse trains. Pulse picking applications with lasers emitting up to 100 MHz pulse trains require two drivers in Full Bridge configuration. Operation control of all our drivers can be made by two trigger (sync) pulses (Fig. 1) or by single trigger pulse (Fig. 2) whereas rising edge of trigger pulse turns ON high voltage to Pockels cell and falling edge of the same trigger pulse turns high voltage OFF. DPS drivers have fixed 1 trigger pulses (sync) control. DPD drivers have fixed 2 trigger pulses (sync) control. Thus the choice of driver with 1 (DPS) or with 2 (DPD) trigger pulses control must be made by customer before ordering process. While DP-SP and DPBX series drivers have switchable 1 or 2 trigger pulses control.

OPTICS

PULSE REGENERATION TECHNIOUE

Gives possibility to operate push-pull drivers very long output pulse. Pulse regeneration technique does not work with short-pulse (DP-SP) drivers. Pulse regeneration technique diagram is shown in Fig. 3

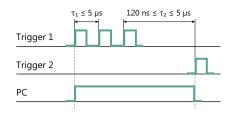


Fig 3. Principle pulse regeneration diagram

GENERAL SPECIFICATIONS OF DPS/DPD/DPBX/DP-SP DRIVERS 1)

DRIVER MODEL	DPS/DPD	DPBX	DP-SP		
Maximal HV operation voltage	up to 5.2 kV	up to 7.0 kV	up to 3.6 kV		
HV pulse rise time (Fig. 5)	< 6 – 8.5 ns	< 6 – 9.5 ns	< 6 – 7 ns		
HV pulse fall time (Fig. 6)	< 6 – 8.5 ns	< 6 – 9.5 ns	< 6 – 7 ns		
HV pulse duration (Fig. 4)	100 – 5000 ns	100 – 5000 ns	15 – 5000 ns		
HV pulse duration extension using pulse regeneration technique	Yes	Yes	No		
Maximal HV pulse repetition rate		up to 1000 kHz			
Triggering pulse duration requirement	> 100 ns	> 100 ns > 100 ns			
Triggering pulse amplitude requirement	3.5 – 5 V (50 Ohms)				
Triggering pulse rise & fall time requirement	< 20 ns	< 20 ns	< 5 ns		
Maximal length of leads to Pockels cell		10 cm (< 5 cm recommended)			
Control by triggering (sync) pulses	1 or 2, fixed	1 or 2, switchable	1 or 2, switchable		
Control by triggering pulses diagram options	Fig. 1 for two trig	gering pulses or Fig. 2 for single t	riggering pulse		
HV pulse delay	45 ns	45 ns	30 ns		
External powering requirements 2)					
High voltage supply	Depends on the mo	del and each model has particula	r recommendation		
Low voltage DC supply	24 V DC ±1.0 V on request 12 V DC ±0.5 V	24 V DC ±1.0 V	24 V DC ±1.0 V		

¹⁾ Specifications are given for Pockels cell with capacity <6 pF. Not all combinations of parameters can be possible at the same time. Specifications are subject to changes without advance notice.

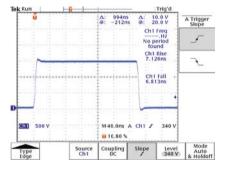


Fig. 4. Typical output pulse shape

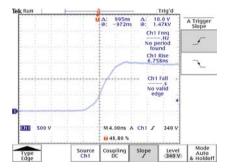


Fig. 5. Typical rising front of output pulse in detail

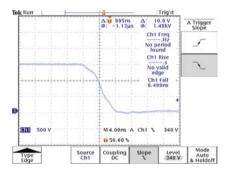
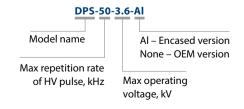



Fig. 6. Typical falling front of output pulse in detail

ORDERING/PART NUMBER INFORMATION

Please provide following information on request of the driver:

- Operating voltage
- > Repetition rate
- > HV Pulse duration (range)
- > Capacitance of Pockels cell
- > OEM or Encased version

²⁾ Driver needs to be mounted on the heatsink (excluding water cooled versions). Heat sink temperature needs to be lower than 35 °C (95 °F) in all regimes of operation.

OEM VERSION UNIPOLAR DRIVERS

CONFIGURATION SAMPLES OF DPS/DPD SERIES OEM VERSION UNIPOLAR DRIVERS

CATALOGUE NUMBER OF DRIVER	DPS-50-3.6 DPD-50-3.6	DPS-500-2.6 DPD-500-2.6	DPS-1000-1.8 DPD-1000-1.8			
Maximal HV operating voltage	3.6 kV	2.6 kV	1.8 kV			
Maximal HV repetition rate *	50 kHz	500 kHz	1000 kHz			
Pulse duration		100 – 5000 ns				
HV pulse rise time, typical	<7 ns	<6.5 ns	<6 ns			
HV pulse fall time, typical	<7 ns	<6.5 ns	<6 ns			
Output polarity		positive				
HV power consumption	<20 W	<90 W	<80 W			
12V/24V power consumption	1 W	6 W	9 W			
Recommended HV power supply model	PS-40	PS-120	PS-80			
Dimensions	see Fig. 7	see Fig. 8				
Cooling	conductive	conductive or water				

DPS in code indicates that driver is controlled by 1 sync pulse, DPD in code indicates that driver is controlled by 2 sync pulses. HV output voltage to Pockels cell is equal to HV power supply voltage.

Heat sink temperature needs to be lower than 35 °C (95 °F) in all regimes of operation.

* Drivers with any non-standard HV pulse repetition rate from 0 to 1000 kHz are also available in case of request.

OEM version of DPS/DPD series driver with conductive pad. Suitable for repetition rate up to 50 kHz

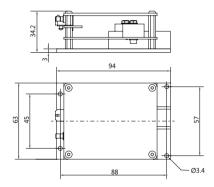


Fig. 7. Outline drawing of DPS series drivers with conductive pad

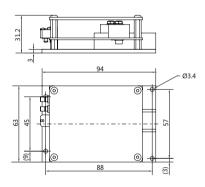


Fig. 7a. Outline drawing of DPD series drivers with conductive pad

OEM version of DPS/DPD series driver with general purpose pad

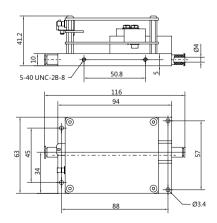


Fig. 8. Outline drawing of DPS series driver with general purpose pad

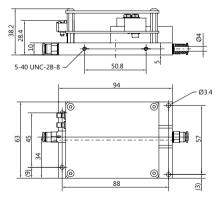
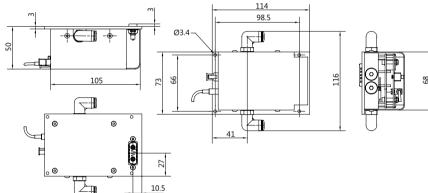


Fig. 8a. Outline drawing of DPD series driver with general purpose pad

OPTICS

ENCASED VERSION UNIPOLAR DRIVERS


CONFIGURATION SAMPLES OF DPS/DPD SERIES ENCASED VERSION UNIPOLAR DRIVERS

CATALOGUE NUMBER OF DRIVER	DPS-250-3.6-Al DPD-250-3.6-Al	DPS-500-2.6-Al DPD-500-2.6-Al	DPS-1000-1.8-AI DPD-1000-1.8-AI
Maximal HV operating voltage	3.6 kV	2.6 kV	1.8 kV
Maximal HV repetition rate *	250 kHz	500 kHz	1000 kHz
Pulse duration		100 – 5000 ns	
HV pulse rise time, typical	<7 ns	<6.5 ns	<6 ns
HV pulse fall time, typical	<7 ns	<6.5 ns	<6 ns
Output polarity		positive	
HV power consumption	<75 W	<90 W	<80 W
12V/24V power consumption	4 W	6 W	9 W
Recommended HV power supply model	PS-80	PS-120	PS-80
Dimensions		see Fig. 9	
Cooling		water	

^{*} Drivers with any non-standard HV pulse repetition rate from 0 to 1000 kHz are also available in case of request.

10.5 Encased version of driver DPS/DPD models Fig. 9. Outline drawing of encased version of driver DPS/DPD models DPS/DPD-200-xx, DPS/DPD-200-xx, DPS/DPD-250-xx, DPS/DPD-500-xx, DPS/DPD-1000-1.8

DPS/DPD-250-xx, DPS/DPD-500-xx, DPS/DPD-1000-1.8

WEKSMAOPTICS

ENCASED VERSION BIPOLAR DRIVERS

CONFIGURATION SAMPLES OF DPS/DPD/DPBX SERIES ENCASED VERSION BIPOLAR DRIVERS

CATALOGUE NUMBER OF DRIVER	DPS-250-5.2-AI DPD-250-5.2-AI	DPS-300-4.6-Al DPD-300-4.6-Al	DPS-1000-2.9-AI DPD-1000-2.9-AI	DPBX-250-7.0-AI	DPBX-1000-3.8-AI
Maximal HV operating voltage	5.2 kV	4.6 kV	2.9 kV	7.0 kV	3.8 kV
Maximal HV pulse repetition rate 1)	250 kHz	300 kHz	1000 kHz	250 kHz	1000 kHz
Pulse duration 2)			100 – 5000 ns		
HV pulse rise time, typical	<8.5 ns	<8 ns	<7.5 ns	< 9.5 ns	< 6 ns
HV pulse fall time, typical	<8.5 ns	<8 ns	<7.5 ns	< 9.5 ns	< 6 ns
Output polarity			bipolar		
HV power consumption 3)	<100 W	<100 W	<120 W	< 200 W	< 210 W
DC power consumption		9 W		< 6 W	< 10 W
Recommended HV power supply model		PS2-60			PS2-60-2.0 Two pieces
Dimensions		see Fig. 10	See F	ig. 11	
Cooling		conductive or water		Wa	ater

- Drivers with any non-standard HV pulse repetition rate from 0 to 1000 kHz are also available in case of request
- ²⁾ Pulse duration can be extended using pulse regeneration.
- ³⁾ Power consumption for 6 pF load. Voltage or repetition rate derating is necessary if capacitance of your Pockels cell is higher. Contact vendor for details.

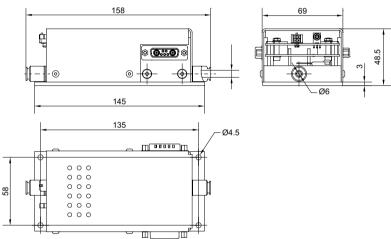


Fig. 10. Outline drawing of encased version of driver DPS/DPD models

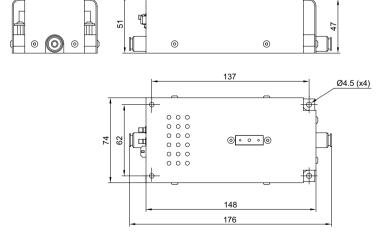


Fig. 11. Outline drawing of encased version of driver DPBX models

- Bipolar drivers DPS and DPD series have fixed 1 OR 2 trigger pulses (sync pulses)
- Bipolar drivers DPBX series have switchable 1 or 2 trigger pulses control.
- HV output voltage to Pockels cell is equal to HV power supply voltage, i.e. sum of positive and negative voltage values.
- > Driver needs to be mounted on heatsink unless it is cooled by water.
- > Drives base plate temperature needs to be lower than 35 °C in all regimes of operation.

Encased version of driver DPS/DPD models.
Water cooled version

SHORT PULSE DRIVERS

FEATURES

MEKSMA

OPTICS

- > Short circuit protection at driver output
- > Driver pad overheat sensor stops operation when overheated
- > Overheat optocoupled output signal
- > Switchable single pulse and two pulses control operation modes
- > LED for error indication (overheat and short circuit)

CONFIGURATION EXAMPLES OF DP-SP SERIES SHORT-PULSE DRIVERS

CATALOGUE NUMBER OF DRIVER	DP-SP-50-3.6	DP-SP-250-3.6	DP-SP-600-2.5	DP-SP-250-3.6-AI	DP-SP-600-2.5-AI	
Max / min HV operating voltage	3.6 kV / 1.8 kV	3.6 kV / 1.8 kV	2.5 kV / 1.25 kV	3.6 kV / 1.8 kV	2.5 kV / 1.25 kV	
Maximal HV repetition rate 1)	50 kHz	250 kHz	600 kHz	250 kHz	600 kHz	
Pulse duration 2)	15 – 5000 ns	15 – 1250 ns	15-400 ns	15 – 1250 ns	15-400 ns	
HV pulse rise time, typical	<7 ns	<7 ns	<6.5 ns	<7 ns	<6.5 ns	
HV pulse fall time, typical	<7 ns	<7 ns	<6.5 ns	<7 ns	<6.5 ns	
Output polarity			positive			
HV power consumption	<20 W	<75 W	<100 W	<75 W	<100 W	
12V / 24V power consumption	1 W	4 W	7 W	4 W	7 W	
Recommended HV power supply model	PS-40	PS-80	PS-120	PS-80	PS-120	
Dimensions	see Fig. 12	see Fig. 13 see Fig. 14			ig. 14	
Cooling	conductive	water				

¹⁾ Upon request maximal HV repetition rate can be extended to 1000 kHz if output voltage is below 1.8 kV.

Driver needs to be mounted on the heatsink (excluding water cooled versions). Heat sink temperature needs to be lower than 35 °C (95 °F) in all regimes of operation. Please specify working voltage and required tuning range by ordering. HV output voltage to Pockels cell is equal to HV power supply voltage.

OEM version of DP-SP series driver with general purpose pad

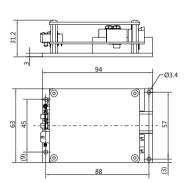


Fig. 12. Outline drawing of DP-SP series drivers with conductive pad

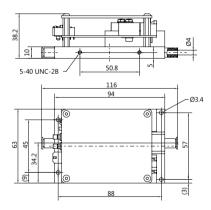


Fig. 13. Outline drawing of DP-SP series driver with general purpose pad

Encased version of driver DP-SP

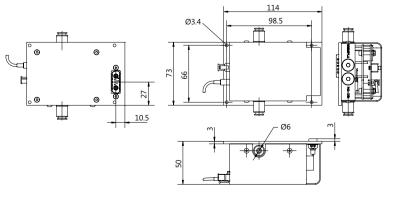


Fig. 14. Outline drawing of encased version of driver DP-SP

²⁾ Pulse regeneration technique not works with short pulse drivers.

DPB

HIGH VOLTAGE POCKELS CELL DRIVER

FEATURES

- > HV pulse amplitude up to 9.8 kV
- > HV pulse duration down to 30 ns
- > HV pulse amplitude doubling layout
- > Repetition rate up to 10 kHz
- > Easy integration with HV power supply
- Switchable one/two trigger pulses control model

DPB series High Voltage drivers can operate with highest possible high voltage amplitudes among the Pockels cells drivers offered by EKSMA Optics.

DPB series drivers feature short HV pulse rise and fall time and fast repetition rate. It is offered with power supply integrated on the top of the driver's board ensuring compact design of the complete unit.

SPECIFICATIONS

CATALOGUE NUMBER	DPB-10-4.2	DPB-5-5.5	DPB-3-8.6	DPB-2.5-9.8
Maximum output pulse amplitude (HV)	4.2 kV	5.5 kV	8.6 kV	9.8 kV
Output polarity		bip	olar	
HV pulse rise time, typical	7 ns	8 ns	10.5 ns	12 ns
HV pulse fall time, typical	7 ns	8 ns	9.5 ns	10.5 ns
HV pulse duration	303	000 ns	3520	000 ns
Maximum HV repetition rate	10 kHz	5 kHz	3 kHz	2.5 kHz
HV pulse delay		30	ns	
Requirement for external triggering pulse amplitude load		3.55 V (50 Ω load)		
Requirement for external triggering pulse rise time		< 5	ns	
External powering requirements:				
Low voltage DC supply		A or 12 V, 220 mA sh current)	2425 V	, 150 mA
HV power supply	2.2 kV, 5 W	2.8 kV, 5W	4.4 kV, 5W	5.0 kV, 5W
DC Connectors		Molex Mi	cro-Fit 3.0	
Dimensions (L x W x H):				
Driver board	135 × 65	× 30 mm	135 × 75	× 30 mm
Driver board mounted with PS-5 power supply	151 × 71 × 5	2 mm (<i>Fig. 3</i>)	151 × 86 × 5	9 mm <i>(Fig. 4)</i>
Weight not including HV power supply	70) g	130) g

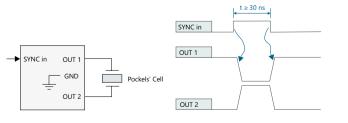


Fig. 1. Diagram of pockels cell connection to driver and timing charts of driver controlled by 1 sync pulse

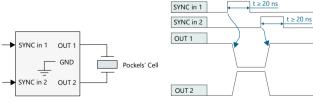


Fig.2. Diagram of pockels cell connection to driver and timing charts of driver controlled by 2 sync pulses

OPTICS

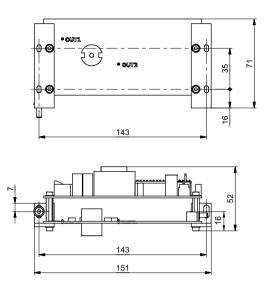


Fig. 3. Outline drawing of DPB-10 ir DPB-5 drivers

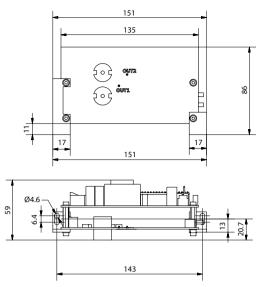
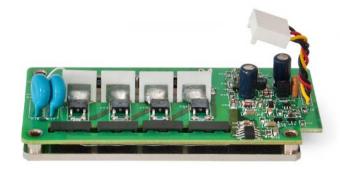



Fig. 4. Outline drawing of DPB-3 ir DPB-2.5 drivers

HIGH REPETITION RATE POCKELS CELL DRIVER FOR Q-SWITCHING OF DIODE PUMPED LASERS

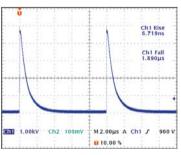
FEATURES

- > Pulse repetition rate up to 100 kHz
- > Fast HV rise time <7 ns for 4 kV pulse
- > HV pulse amplitude up to 4 kV

DQ series high repetition rate Pockels cell driver has been designed for use in mode-locked lasers for cavity dumping or for cavity Q-switching of solid-state nanosecond lasers. Fast HV (less than 7 ns) edge ensures excellent pre- and post-pulse contrast.

Ability to operate at high pulse repetition rates makes this driver perfect fit for most of diode-pumped nanosecond lasers. For pulse repetition rates up to 10 kHz heatsink is not

required. For high repetition rates the driver should be attached to the heatsink with thermal resistance of at least 0.4 °C/W for room temperature (25 °C) operation.


The driver should be mounted into dielectric box (not provided) providing electrical insulation. Low voltage power supply is required to internal triggering circuit, while tuning of HV power supply voltage.

SPECIFICATIONS

CATALOGUE NUMBER	DQ-100-4		
Maximum high voltage (HV) pulse amplitude	4.0 kV		
Polarity	Positive		
HV pulse rise time	< 7 ns		
HV pulse fall time	~2 µs ¹)		
HV pulse duration	180 ns ¹⁾		
Maximum HV pulse repetition rate	100 kHz		
HV pulse jitter	< 0.5 ns		
External triggering pulse duration requirement	100 – 1000 ns		
External triggering pulse amplitude requirement	3 – 5 V (50 Ω)		
External triggering pulse rise & fall time	< 10 ns		
HV pulse delay	35 – 40 ns		
External powering requirements:			
high voltage supply	0 – 4.0 kV, 9 mA max ²⁾		
low voltage DC supply	9 – 24 V, 500 mA max ²⁾		
Operating temperature	0 – 35 °C ³⁾		
Size	104 × 52 × 25 mm		

¹⁾ Typical value.

²⁾ Test conditions: PRR = 100 kHz, C = 6 pF, U = 4 kV.

Oscillogram of DQ-100-4 driver operation

³⁾ Heatsink temperature should be bellow 35 °C at 100 kHz pulse repetition rate.

Fast edge of HV pulse in detail

DQF

MEKSMA

OPTICS

POCKELS CELLS DRIVER FOR Q-SWITCHING OF FLASHLAMP PUMPED LASERS

External view of DQF-0.2-5 driver

External view of DQF-0.1-8 driver

DQF drivers are designed for Q-switching of nanosecond lasers without use of phase retardation plate. High voltage is applied to Pockels cell in order to inhibit oscillation. Pockels cell is opened by negative polarity pulse allowing laser to radiate.

Drivers DQF-0.1-8D is integrated with ±4 kV HV power supply. High voltage can be controlled either by onboard trimmer potentiometer or by using CAN interface. We suggest CAN-USB converter with CAN browser software for Windows* operating system. CAN browser can be kept disconnected after proper voltage value is set.

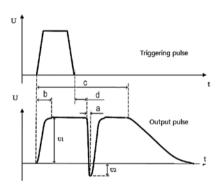


Fig. 1. Time diagram of DQF driver

SPECIFICATIONS

CATALOGUE NUMBER	DQF-0.2-5D	DQF-0.1-8D
Maximum high voltage to cell (HV) pulse amplitude (U1 + U2)	5 kV	8 kV
U1 value (Fig. 1)	equal to HV po	wering voltage
U2 value (Fig. 1)	equal to 0.25×U1	equal to 0.25×U1
HV pulse fall time (a)	< 15 ns	< 12 ns
HV pulse rise time, typical (b)	60 μs	120 μs
HV pulse duration, typical (c)	300 μs (1200 μs optionally)	650 μs
HV pulse repetition rate	≤ 250 Hz	≤ 100 Hz
HV pulse delay (d)	40 ns	25 ns
External triggering pulse duration	100 – 1200 μs	120 – 650 μs
External triggering pulse amplitude	3 – 5 V (50 Ω)	3.5 – 5 V (50 Ω)
External triggering pulse rise & fall time	< 20 ns	< 20 ns
Board dimensions 1)	92 × 70 × 22 mm	92 × 70 × 27 mm
Mounting holes location for M3 studs	84 × 62 mm	84 × 62 mm
External powering requirements:		
DC supply	12 – 24 V, max 200 mA	12 V, max 15 mA
HV supply	4 kV, 1 mA	integrated in the driver

 $^{^{1)}}$ Keep safety distance at least 5 mm from any side of board or any component to surrounding conductive parts.

POCKELS CELLS

MEKSMA

OPTIC

HV Power Supplies

PS

HIGH VOLTAGE POWER SUPPLY

PS-40 power supply

PS-120, PS2-60 power supply

PS-80 power supply

Power supply PS series is designed for powering Pockels cell driver with appropriate power and voltage requirement. Due to its performance and reliable design, PS is good choice for OEM customers. Table below shows general specifications of HV power supplies. Particularly "Maximal output high voltage" row gives reference of maximal achievable voltage for particular model limited by design. For specific driver this limitation is different. E.g. for the driver DPS-1000-1.8 voltage control limits are made from 0.8 kV to 1.8 kV typically.

Power supplies PS-120 and PS2-60 are equipped with overheat protection and LED indicator that stops operation and lights if ambient temperature exceeds 55 °C.

SPECIFICATIONS

CATALOGUE NUMBER	PS-5	PS-40	PS-80	PS-120	PS2-60
Maximal high voltage output options 1)	1.8 kV	1.3 kV	1.8 kV	1.8 kV	±1.4 kV
	2.8 kV	1.8 kV	2.6 kV	2.6 kV	±2.0 kV
	4.0 kV	2.5 kV	3.1 kV	3.1 kV	±2.6 kV
	4.4 kV	3.6 kV	3.6 kV	3.6 kV	±3.6 kV
	5.0 kV	4.0 kV	4.0 kV		
			4.4 kV		
Voltage control limits			-1 kV from maximal val	ue	
Maximal output power at maximal output voltage 2)	5 W	40 W	80 W	120 W	2×60 W
Output voltage control options 3)		CA	N interface ⁴⁾ , internal tr	immer	
External powering	24 V DC, <15 W	24 V DC, <50 W	24 V DC, <90 W	24 V DC, <150 W	24 V DC, <150 W
Dimensions (L \times W \times H)	135×70×30 mm	160×70×40 mm	175×70×45 mm	175×110×45 mm	175×110×45 mm
Mounting holes Ø3.4 mm location	125×35 mm	150×60 mm	165×60 mm	165×100 mm	165×100 mm

¹⁾ Matching to Pockels cell driver voltage requirement is necessary by ordering.

Output ripple is 0.5% typically at maximal power for all models of HV power supplies. External filter can be used to reduce that value if certain application requires smoother output. All Pockels cell drivers have integrated ripple filter and usually do not require additional one. Contact us for suggestions if your specific application needs lower ripple voltage.

²⁾ Maximal power is proportionally lower by tuning to lower HV output.

³⁾ Needs to be indicated by ordering.

⁴⁾ Requires USB-CAN converter for computer control that is sold separately. Voltage control limits from 40% Umax to Umax

HVS100

MEKSMA

OPTICS

HIGH VOLTAGE POWER SUPPLY

Front and rear panels of HVS100 power supply

Laboratory type HVS100 series high voltage power supply is especially designed for powering of drivers of Pockels cells. However, it can be used as general purpose high voltage power supply for other electronic devices and different applications in the laboratory. HVS100 features two voltage output channels – adjustable high voltage output channel and 24 V DC output channel. Required high voltage value can be set and adjusted in the limits from -40% of maximal specified voltage to maximal specified voltage (-40% U_{max} to U_{max}).

HVS100 has 2.4 inch OLED display for high voltage control and power consumption monitoring at the output channel.

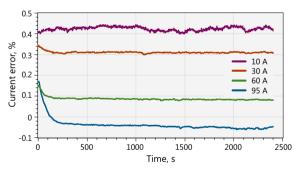
SPECIFICATIONS

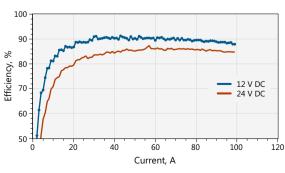
CATALOGUE NUMBER	HVS100-2x60	HVS100-120	HVS100-5	HVS100-40	HVS100-80	HVS100-150
Maximal high voltage output options	±1.4 kV ± 2.5 kV	1.8 kV 2.6 kV 3.1 kV 3.6 kV	1.8 kV 2.8 kV 4.0 kV 4.4 kV 5.0 kV	1.3 kV 1.8 kV 2.5 kV 3.6 kV 4.0 kV	1.8 kV 2.6 kV 3.1 kV 3.6 kV 4.0 kV 4.4 kV	1.8 kV 2.6 kV 3.1 kV 3.6 kV 4.0 kV 4.4 kV
HVS100 Maximal output power at maximal output voltage	2×60 W	120 W	5 W	40 W	80 W	150W
Voltage control limits			40 % U _m	ax to U _{max}		
Remaining power at the output of 24 V DC for external needs	55 W	55 W	190 W	150 W	100 W	Not available
Mains voltage / DC supply		90	to 264 V AC, 47-63	Hz		24 V DC
Dimensions (W \times L \times H)			210 × 245	× 53.5 mm		
Weight			2.5	kg		

Output ripple is 0.5% typically at maximal power for all models of HV power supplies. Maximal power is proportionally lower by tuning to lower HV output.

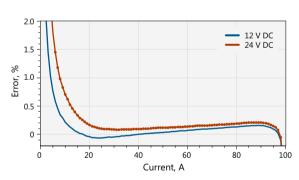
Laser Diode Drivers

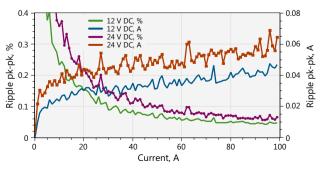
uniLDD


UNIVERSAL LASER DIODE DRIVER


uniLDD is DC input power converter designed to supply CW or pulsed current for single emitter, bar, stacked laser diode or high power VCSEL in Constant Current Mode (or CC mode). It can be installed either as unit assembled as set of open PCB boards or as standalone unit. The standalone unit is uniLDD enclosed together with the power supply.

FEATURES


- > Economical OEM module
- Wide current range
- > Wide diode compliance voltage range
- > Storage capacitor option for pulse mode
- Storage capacitor charger (current limit) option pulse mode
- > Latest DSP based control technology
- Frequency response analysis feature allows easy compensation to achieve stable operation with any load and connection cables combination in both CW and QCW modes
- > High efficiency switching mode converter
- > Multi-phase low ripple power stage
- > Board fan and unit fan PWM controllers
- > Low current ripple
- Low current drift
- > TEC controller option
- > Analog and digital control interfaces
- > Easy configuration


uniLDD current drift. From cold start for different currents

uniLDD efficiency. 12 V and 24 V DC power, 2 V junction + 10 M Ω series R load

uniLDD current error. 12 V and 24 V DC power, 2 V junction + 10 M Ω series R load

uniLDD ripple current. 12 V and 24 V DC power, 2 V junction + 10 M Ω series R load

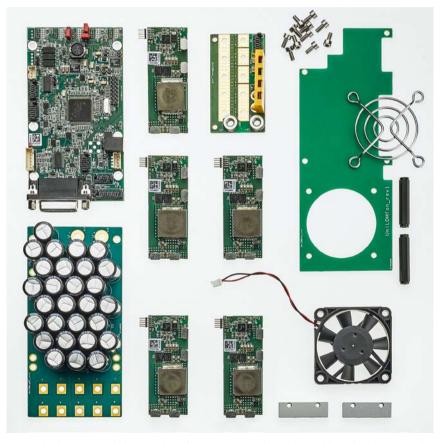
OVENS FOR NONLINEAR CRYSTALS

SPECIFICATIONS

MEKSMA

OPTICS

PARAMETER	VALUE	NOTES
INPUT		
Voltage, power stage	12 90 V DC	
Voltage, control stage	12 30 V DC	Control and power stage may share single supply 1230 V
OUTPUT, CW mode		
Diode compliance voltage	1 28 V	Up to 95% of power stage supply voltage
Max current	50 – 100 A	See CONFIGURATION for max current values
Current ripple	0.1 % pk-pk	DC 100 kHz bandwidth, in ×0.5 ×1 of max current range
Current drift	< 0.2 %	Cold start, 8 h period, after 5 min warm up
Bandwidth of I _{programm} control input frequen		At minimal connection cable inductance
OUTPUT, OCW (Pulse mode)		
Diode compliance voltage	1 80 V	
Max pulse current	160 – 360 A	See CONFIGURATION for max current values
·		At minimal connection cable inductance and sufficient power stag
Current pulse raise	< 5 μs	voltage
Max RMS current	80 A	80 A for diode compliance voltage >28 V
Current pulse amplitude stability	0.1% pk-pk	In ×0.5 ×1 of max current range
Current drift	< 0.2 %	Cold start, 8 h period, after 5 min warm up
ENVIRONMENT		
Operating temperature	0 to 40 °C	De-rate current at higher temperature
Cooling	Forced air, installed or external shared fan	Inquire for conduction cooled version
PROTECTIONS		
PROTECTIONS		
Current transient protection and shut-down	<u> </u>	
Open circuit shut-down		
Power voltage brownout shut-down		
Over temperature shut-down Interlock shut-down		
interiock study down		
AUXILIARY OUTPUTS		
+5 V @ 200 mA		
+15 V @ 100 mA		
-15 V @ 100 mA		
CONFIGURATIONS		
Operation mode	CW, QCW (pulse)	
Max current, CW mode		
	50 A, 80 A, 100 A	
Max current, pulse mode	50 A, 80 A, 100 A 160 A, 360 A	I _{RMS} ≤ 100 A, duty factor ≤ 20 %
		I _{RMS} ≤ 100 A, duty factor ≤ 20 %
Max power stage voltage	160 A, 360 A	I _{RMS} ≤ 100 A, duty factor ≤ 20 %
Max power stage voltage PHYSICAL CHARACTERISTICS	160 A, 360 A	I _{RMS} ≤ 100 A, duty factor ≤ 20 %
Max power stage voltage PHYSICAL CHARACTERISTICS Assembly size long version (L×W×H)	160 A, 360 A 28 V (CW, QCW) and 90 V (QCW)	
Max power stage voltage PHYSICAL CHARACTERISTICS Assembly size long version (L×W×H)	160 A, 360 A 28 V (CW, QCW) and 90 V (QCW) 190 × 68 × 55 mm	15 mm fan included for currents < 50 A, fan excluded
Max power stage voltage PHYSICAL CHARACTERISTICS Assembly size long version (L×W×H) Assembly size short version (L×W×H)	160 A, 360 A 28 V (CW, QCW) and 90 V (QCW) 190 × 68 × 55 mm 120 × 63 × 50 mm	15 mm fan included for currents < 50 A, fan excluded Pin-out resembles standard interface of LDN series diode drivers fro
Max power stage voltage PHYSICAL CHARACTERISTICS Assembly size long version (L×W×H) Assembly size short version (L×W×H)	160 A, 360 A 28 V (CW, QCW) and 90 V (QCW) 190 × 68 × 55 mm 120 × 63 × 50 mm Analog control – DSUB-15	15 mm fan included for currents < 50 A, fan excluded Pin-out resembles standard interface of LDN series diode drivers fro Lumina Power
Max power stage voltage PHYSICAL CHARACTERISTICS Assembly size long version (L×W×H) Assembly size short version (L×W×H) Connectors	160 A, 360 A 28 V (CW, QCW) and 90 V (QCW) 190 × 68 × 55 mm 120 × 63 × 50 mm Analog control – DSUB-15 Digital control – Molex Picoflex	15 mm fan included for currents < 50 A, fan excluded Pin-out resembles standard interface of LDN series diode drivers fro Lumina Power
Max power stage voltage PHYSICAL CHARACTERISTICS Assembly size long version (L×W×H) Assembly size short version (L×W×H) Connectors DIGITAL CONTROL INTERFACE	160 A, 360 A 28 V (CW, QCW) and 90 V (QCW) 190 × 68 × 55 mm 120 × 63 × 50 mm Analog control – DSUB-15 Digital control – Molex Picoflex	15 mm fan included for currents < 50 A, fan excluded Pin-out resembles standard interface of LDN series diode drivers fro Lumina Power 6 pin and 10 pin connectors
Max current, pulse mode Max power stage voltage PHYSICAL CHARACTERISTICS Assembly size long version (L×W×H) Assembly size short version (L×W×H) Connectors DIGITAL CONTROL INTERFACE CAN bus	160 A, 360 A 28 V (CW, QCW) and 90 V (QCW) 190 × 68 × 55 mm 120 × 63 × 50 mm Analog control – DSUB-15 Digital control – Molex Picoflex DC power input – Multiple	15 mm fan included for currents < 50 A, fan excluded Pin-out resembles standard interface of LDN series diode drivers fro Lumina Power 6 pin and 10 pin connectors Protocol description, control application, libraries and programmin
Max power stage voltage PHYSICAL CHARACTERISTICS Assembly size long version (L×W×H) Assembly size short version (L×W×H) Connectors DIGITAL CONTROL INTERFACE	160 A, 360 A 28 V (CW, QCW) and 90 V (QCW) 190 × 68 × 55 mm 120 × 63 × 50 mm Analog control – DSUB-15 Digital control – Molex Picoflex DC power input – Multiple Proprietary Eksma protocol	15 mm fan included for currents < 50 A, fan excluded Pin-out resembles standard interface of LDN series diode drivers fro Lumina Power 6 pin and 10 pin connectors Protocol description, control application, libraries and programmin samples are provided on request


- Max current is transient protection upper setting. Laser diode EOL nominal current should be 95% or less of this value.
- Parallel connection of several drivers can be used above 100 A in CW and 400 A in QCW.

MEKSMAOPTICS

ANALOG INTERFACE PINOUT, 15-PIN D-SUB, FEMALE

PIN	SIGNAL NAME	DIRECTION	VOLTAGE LEVEL	DESCRIPTION
1	Enable	Input	TTL, LVTTL	The enable function pulls the RTO signal high
2	Ready to Operate (RTO)	Input/Output through 330 Ω resistor	>2.4 V driver output is active, <0.5 V output is clamped	RTO is tied to "High" by the driver when "Enable" input is High. Alarms clamp RTO low and disable driver output. External device may clamp RTO to GND and disable driver output. RTO allows to join fault circuits of several drivers connected in parallel
3	Interlock	Input	10 kΩ pull up to 3.3 V, LOW ≤ 0.4 V	The Interlock function can be connected to external safety or machine protection switches such as door or temperature switches. Open = OFF Connect to GND = RUN
4	GND			
5	V _{out} monitor	Output	Vout, driver output voltage	The output voltage monitor. $V_{out} = Diode$ compliance voltage + voltage drop on connection wires
6	l _{out} monitor	Output	$0-12 V * = 0 - I_{out} max$	The output current monitor
7	I _{program}	Input	$0 - 9 V * = 0 - I_{out} max$	Output current setting or modulating by applying a voltage, CW and Pulse mode
8	Pulse control	Input	TTL, LVTTL positive pulse	Trigger input for pulse mode. Pulse rise will trigger current pulse of preset width
9	GND			
15	GND			
10, 11	+5V	Output	+5V	Auxiliary, 200 mA
12	-15V	Output	-15V	Auxiliary, 100 mA
13, 14	+15V	Output	+15V	Auxiliary, 200 mA

^{*} Subject to change.

 $Modular\ design.\ Required\ features\ and\ specifications\ are\ achieved\ by\ combining\ different\ boards\ to\ one\ module$

OPTICS

Laser Synchronization Modules

SY4000

SYNCHRONIZATION MODULE AND PULSE DELAY GENERATOR

FFATURES

- > Compact design
- > OEM (single board) and encased options
- > 8 independent output channels
- > Ultra-stable internal clock 0.2 ppm (optional)
- > Precise delay control in range 2 ns to 150 ms
- > 25 ps timing resolution
- > Hi-accuracy synchronization to external pulse train
- > DAC output
- \rightarrow Both 50 Ω and differential outputs present
- > Measurement of
 - Optical clock frequency
 - Triggering frequency
 - Delay
- > Frequency divider
- > Frequency divider for photodetectors

SY4000 Synchronization module and pulse delay generator encased

Pulse synchronization module with delay generator is designed to create up to 8 delayed output pulse sequences precisely synchronized to internal or external clock. Photo detector or electrical signal can be used as input source to be synchronized with. Generator gives possibility to create different sequences like delayed triggering, or any delayed precisely timed series. Particularly, EKSMA Optics recommends using SY4000 to create sets of pulses to control DPD/DPS series Pockels cell drivers with one, two or 4 triggering inputs.

ENCASED VERSION

Preserves all specifications as SY4000 and additionally communication ports RS232, USB, LAN, WLAN are added. Powering from mains 90 ... 264 V, 50 - 60 Hz or 12 V DC. Power consumption less than 15 W. Ideal solution for your lab and/or evaluation before switching to OEM version.

POCKELS CELLS

SPECIFICATIONS

MODEL	SY4000
PULSE GENERATION	
Channel modes	Single shot, burst, normal, duty cycle, frequency divider
Delay range	0 to 150 ms
Negative delay	-150 ms
Pulsewidth	2 ns to 150 ms
Resolution	25 ps
Accuracy	25 ps + 0.000001 × delay
Time base	100 MHz, 0.2 ppm
Jitter	< 30 ps
Burst mode	1 to 65535
EXTERNAL TRIGGER	
Rate	DC to 20 MHz
Thershold	1.3 V
Input level	LVTTL, TTL
Slope	rising
Jitter	< 100 ps RMS
Delay	< 13 ns; < 70 ns
INTERNAL GENERATOR	
Mode	Duty cycle
Rate	50 ns to 100 sec
Resolution	10 ns; 300 ps
Accuracy	5 ns + 0.000001 × period
Jitter	100 ps RMS
Burst	0 65535
OUTPUTS	
Output level	2.5 V, 4 V
Impedance	50 Ω
Slew rate	1.5 V/ns
COMMUNICATIONS	
Communications	CAN
OPERATING REQUIREMENTS	
Power requirements	12 V DC, 500 mA
DIMENSIONS (not including connectors)	
OEM board (W × D × H)	100 × 77 × 20 mm
Encased version (W × D × H)	105 × 86 × 85 mm

OEM version of SY4000 Synchronization module and pulse delay generator

Ultrafast Pulse Picking Systems

pMaster 4.0H

DIGITAL SYNCHRONIZATION AND DELAY PULSE GENERATOR

FEATURES

- Synchronizes with lasers operating at up to 100 MHz pulse repetition rate
- > Picks pulses from the train at up to 2 MHz rate

pMaster 4.0H provides sync pulse control for the Pockels cells drivers built-in in pulse picking units. pMaster 4.0H also has high voltage power supplies for the drivers powering in UP1 and MP1 pulse picking units. Digital synchronization and delay pulse generator features 4 independent programmable channel outputs and a communication via USB port with LabView compatible drivers for full control over all parameters.

SPECIFICATIONS of Digital Synchronization and Delay Pulse Generator

MODEL	pMaster 4.0H
PROGRAMMABLE TIMING GENERATOR	
Channel modes	Single shot, burst, normal, duty cycle
Control modes	Internally triggered, externally triggered and external gate
Delay range	0 to 1000 s
Delay accuracy	1.5 ns + 0.0001 delay
Delay resolution	250 ps
Delay jitter	<400 ps RMS
Pulse inhibit delay / output inhibit delay	120 ns / 50 ns
TRIGGER INPUT MODULE	
Trigger input rate	DC – 5 MHz
Trigger insertion delay	<180 ns
Trigger jitter	<800 ps RMS
Minimal pulse width	2 ns
Trigger threshold	0.2 – 15 V DC
Maximum input voltage	60 V Peak
Input impedance	1.5 kΩ + 40 pF
Resolution	10 mV
EXTERNAL CLOCK INPUT MODULE	
External clock input rate	10 MHz – 100 MHz
Minimal pulse width	100 ps
Pulse amplitude	1 V rms (min) – 5 V rms (max)
Input impedance	102 Ω
PHYSICAL SPECIFICATIONS	
High voltage power supply for PC driver	Built-in
Dimensions W × D × H	482 × 387 × 88 mm

OPTICS

FP1

PULSE PICKER

FFATURES

> Pulse picking rate up to 5 kHz

FP1 pulse picker consists of built-in driver with HV power supply and attached to the unit Pockels cell. This unit is able to select pulses at up to 5 kHz rate. FP1 requires sync pulses from the laser and 24 V DC, 15 W power supply for the driver control and

powering. As an option it can be controlled by pMaster 4.0H generator. FP1 can be synchronized with a laser generating pulse train with max 40 MHz repetition rate for single pulse picking task when it is in setup with pMaster 4.0H generator.

FP1 pulse picker comes with DKDP Pockels cell which is set for quarter wave voltage operation. On special requests DKDP Pockels cell can be changed to BBO or KTP Pockels cell for half wave voltage operation.

MP1

PULSE PICKER

FEATURES

> Pulse picking rate up to 600 kHz

MP1 pulse picker consists of built-in fast driver and a Pockels cell. This unit is able to select pulses at up to 600 kHz rate. MP1 is operated by pMaster 4.0H generator which provides sync pulses for driver control and has built-in HV power supply. MP1 can be synchronized with a laser generating pulse train with max 60 MHz repetition rate for single pulse picking task when it is in setup with pMaster 4.0H generator.

MP1 pulse picker comes with BBO Pockels cell and it is set for quarter wave voltage operation. On special requests BBO Pockels cell can be changed to KTP Pockels cell for half wave voltage operation.

UP1

ULTRAFAST PULSE PICKER

FEATURES

> Pulse picking rate up to 2 MHz

UP1 pulse picker consists of built-in drivers in full bridge configuration and attached to the unit Pockels cell. The UP1 pulse picker in setup with pMaster 4.0H generator is able to select pulses at up to 2 MHz rate from max 100 MHz repetition rate pulse train. UP1

comes with BBO or KTP Pockels cell which are set for quarter wave or half wave voltage operation depending on the laser wavelength and required minimal clear aperture of the Pockels cell.

KTP Pockels cell's usage is limited by the average power of the laser beam – up to 2 W and contrast ratio is typically >1:500. While BBO Pockels cells operate at much higher power levels and feature higher contrast ratio – typically >1:1000.

ORDERING INFORMATION

CODE	DESCRIPTION
pMaster 4.0H	Pulse synchronization and delay generator, 4 output channels for trigger pulses with built-in High Voltage supply
UP1-BBO-2.5	Ultrafast pulse picker for up to 2 MHz operating rate, BBO clear aperture 2.5 mm, √4 operation at 1030 − 1064 nm
UP1-BBO-3.5	Ultrafast pulse picker for up to 1 MHz operating rate, BBO clear aperture 3.5 mm, λ/4 operation at 1030 − 1064 nm
UP1-KTP-5.5	Ultrafast pulse picker for up to 1 MHz operating rate, KTP clear aperture 5.5 mm, λ/2 operation at 1030 – 1064 nm
MP1-BBO-3.5	Pulse picker for up to 600 kHz operating rate, BBO clear aperture 3.5 mm, λ/4 operation at 1030 – 1064 nm
FP1-DKDP-11	Pulse picker with built in HV supply for up to 5 kHz operating rate, DKDP clear aperture 11 mm, λ/4 operation at 1064 nm

OPTICS

SPECIFICATIONS of Pulse Picker Units

PULSE PICKER	FP1-DKDP-11	MP1-BBO-3.5	UP1-BBO-3.5	UP1-KTP-6	UP1-BBO-2.5
Built-in driver	operates at up to 5 kHz rep. rate	operates at up to 600 kHz rep. rate		s at up to rep. rate	operates at up to 2 MHz rep. rate
Max laser repetition rate for single pulse picking	40 MHz	60 MHz	100 MHz		100 MHz
HV power supply	built-in 1)		Provided in	pMaster 4.0H	
Operation	quarter wave, λ/4	quarter wave, λ/4	quarter wave, λ/4	half-wave, λ/2	quarter wave, λ/4
HV pulse duration	30 – 3000 ns	15 – 5000 ns	0 – 50	000 ns	0 – 5000 ns
HV pulse rise and fall time	<6.5 ns	<7 ns	<6.5 ns		<6 ns
Pockels cell contrast ratio, VCR 2)	>1:2000	>1:500	>1:500		>1:500
Pockels cell transmission 3)	>97 % at 1064nm	>98 % at 1030 nm	>98 % at 1030 nm	>98 % at 1064 nm	>98 % at 1030 nm
Clear aperture	Ø11 mm	Ø3.5 mm ⁴⁾	Ø3.5 mm	Ø5 mm ⁴⁾	Ø2.5 mm
Cooling	conductive heat sink	water	water		water
Dimensions L × W × H	245 × 133 × 81 mm	230 × 90 × 69 mm	320 × 164	1 × 65 mm	320 × 164 × 65 mm

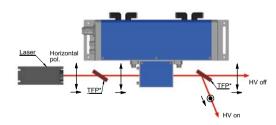
- ¹⁾ Requires only 24 V DC, 15 W external power supply. Can be supplied separately by EKSMA Optics.
- 2) VCR contrast ratio when voltage is applied to the cell.
- ³⁾ Pulse picker operation for other particular laser wavelengths or wavelength ranges are available on request.
- 4) Max clear aperture for BBO Pockels cells can be up to Ø5.8 mm and for KTP Pockels cell up to Ø7 mm.

SUGGESTED CONFIGURATIONS OF PULSE PICKERS AND SYNC PULSE GENERATOR

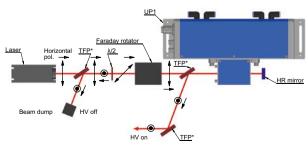
Ultrafast pulse picking at up to 2 MHz rate

Pulse picking at up to 5 kHz rate

Pulse picking at up to 600 kHz rate

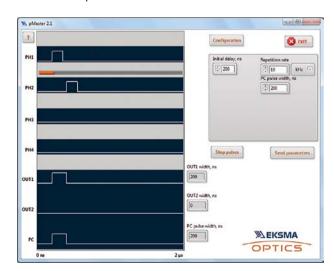


Pulse picking at up to 5 kHz rate



SUGGESTED OPERATION SCHEMES

Half-wave voltage operation scheme


Quater-wave voltage operation scheme

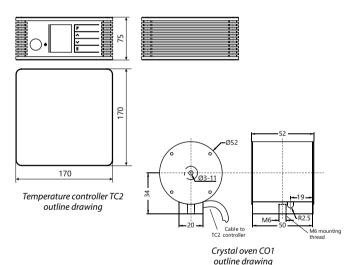
TFP – Thin film polarizer, for instance our standard products: 420-1258UHT, 420-1256UHT or 420-1248UHT.

CONTROL SOFTWARE

pMaster features 4 independent programmable channel outputs and communication via USB port with LabView compatible drivers for full control over all parameters.

Crystal Ovens

Many of widely used nonlinear crystals are susceptible to ambient humidity, for example KD*P, BBO, LBO. Protective coatings applied to the surface can reduce degradation to some extent only. To improve the protection of surfaces of the crystals from the degradation


it is desirable to keep the crystals at higher than ambient temperature, which helps avoid condensation on the crystal surfaces.

In addition, if the crystal is used for harmonics generation, the phase-matching angle depends on crystal temperature. For example, the output power of second harmonics generator based on KD*P crystal can decrease by 50 % if the crystal temperature changes just by one degree, hence for good laser stability precise crystal temperature stabilization is necessary.

TC2 • CO1

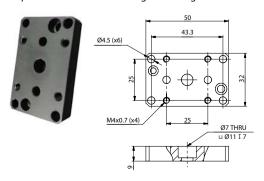
TEMPERATURE CONTROLLER TC2 WITH OVEN CO1

sizes can be ordered separately.

SPECIFICATIONS

computer control interfaces.

MODEL	TC2 + CO1-30	TC2 + CO1-50
Quantity of ovens possible to connect to one controller TC2	2	
Temperature tuning range	RT – 2	200 °C
Maximum crystals dimensions	12×12×30 mm	12×12×50 mm
Sealing (optional)	FS windows	
Temperature tuning step	0.05 °C	
Accuracy	± 0.5 °C	
Long-term stability	± 0.05 °C	
Control interfaces	LAN, USB	
Mains	90-264 V, 47-66 Hz	
Power consumption	< 5	0 W
Dimensions, Dia×D	Ø52×52 mm	Ø52×72 mm


TC2 and CO1 is high temperature set (up to 200 °C) consisting of thermocontroller TC2 and crystal oven CO1. TC2 has two independent outputs and can control two CO1-30 ovens simultaneously. Controller is equipped by LAN and USB

The nonlinear crystal is mounted into adapter before insertion into oven CO1. Such design facilitates handling and replacement of the crystal. The nonlinear crystal can be sealed with fused silica windows in order to provide extra protection. The standard adapters are 30 and 50 mm length with apertures of 3×3 , 4×4 , 5×5 , 6×6 mm and up to 12×12 mm size. Oven is delivered with one, customer's specific size of adapter. Adapters for different

Specifications are subject to changes without advance notice.

RELATED PRODUCTS

Adapter MS-4 for CO1 mounting on tilt stage

ORDERING INFORMATION

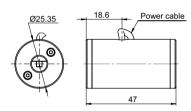
CODE **		DESCRIPTION, FEATURES						
TC2		Temperature controller, RT-200 °C, Fuzzy logic can control two CO1 ovens, long-term stability ±0.05 °K						
For crystal length up to 30 mm	For crystal length up to 50 mm							
CO1-30-y/y	CO1-50-y/y	Standard crystal sizes *						
CO1-30-y/z	CO1-50-y/z	Custom crystal sizes						
CO1-30S-y/y	CO1-50S-y/y	Sealed, standard crystal sizes *						
MS-4		Optional adapter for CO1 oven mounting on a tilt stage. Tilt stage should be ordered separately						

^{*} Sizes 3×3, 4×4, 5×5, 6×6,12×12 are standard.

** y/y, y/z - crystal size.

OPTICS

HEATPOINT



Heatpoint Crystal oven

Ø25.35 14.5 Power cable

HP1 dimensions

29

HP2 dimensions

ROUND OVEN FOR NONLINEAR CRYSTALS

Heatpoint is a compact round oven designed for heating of humidity sensitive nonlinear crystals. It is used to prevent moisture condensation on the crystal faces or for thermo-stabilization of the crystals.

The oven features precise long term stability and compact design. Heatpoint is designed to be used with common one-inch optics positioning mounts or with our special positioning mount PM1. A small thermocontroller is attached to the oven on a wiring.

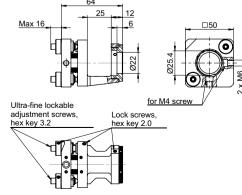
Required temperature of the oven is preset in the factory and it can be chosen by the customer in the range between 30 °C and 80 °C. Preset temperature can be adjusted in ± 5 °C range.

Heatpoint oven has special crystal adapter and fits crystals of size up to $6\times6\times30$ mm. The adapter is made exactly for particular crystal size and it cannot be used for a crystal of a different size.

SPECIFICATIONS

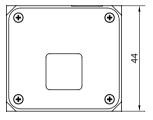
MODEL	HP1	HP2						
Maximum crystals dimensions	6×6×15 mm	6 × 6 × 30 mm						
Preset temperature	30 –	30 − 80 °C						
Temperature tuning range near preset	± 5	5℃						
Long-term stability		30-50 °C 50-80 °C						
Powering requirements	12 -	12 – 16 V						
Power consumption (PMAX)	5.5	5.5 W						
Sensor type	PTC thern	no resistor						
Output connector	2.5 mm n	2.5 mm mono plug						
Thermocontroller size	18 × 12 ×	18 × 12 × 42.5 mm						
Distance (wiring length) from oven to thermocontroller	180	mm						
Oven dimension, dia × L	Ø25.4 × 29 mm	Ø25.4 × 47 mm						

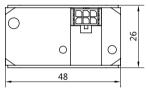
MOUNT SPECIFICATIONS


MODEL	PM1
Adjusting angles, tilt and tip	± 3.5°
Rotation along Z-axis	180°

ORDERING INFORMATION

CODE	DESCRIPTION
HP1	Heatpoint oven (Ø25.4 \times 29 mm) with attached thermocontroller
HP2	Heatpoint oven (Ø25.4 \times 47 mm) with attached thermocontroller
PM1	Positioning mount for Heatpoint ovens


Heatpoint Crystal oven with PM1 holder



EKSMAOPTICS

CH8

CH8 dimensions

OVEN FOR NONLINEAR CRYSTALS

CH8 is compact oven with built-in thermocontroller for nonlinears crystals to keep them at stabilized temperature in range 30...80 °C. It is ideal for larger aperture crystals like KD*P. The crystals with up to 15×15 mm dimensions can be mounted. Each oven is made exactly for specific

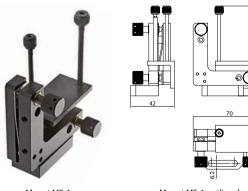
crystal aperture size, so it cannot be used for different size crystals.

CH8 crystal oven can be used with temperature preset at the factory or customer has the possibility to adjust temperature in the range 30 – 80 °C via CAN interface. Our CAN-USB converter is required in this case and it is sold separately.

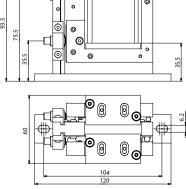
SPECIFICATIONS

MODEL	CH8-20	CH8-30	CH8-50						
Temperature range		30 – 80 °C							
Maximum crystals dimensions	15×15×20 mm	15×15×50 mm							
Temperature stability	better than ± 0.05 °C								
Power consumption	<6 W	<6 W <6 W <9 W							
Control interface	CAN								
Crystal center position above pad		16 mm							
Dimensions, W×H×D	48×44×26 mm	48×44×36 mm	48×44×56 mm						

Specifications are subject to changes without advance notice.


ORDERING INFORMATION

CODE **	DESCRIPTION, FEATURES					
CH8-20 – crystal length up to 20 mm						
CH8-20-y/y	Standard crystal sizes *					
CH8-20-y/z	Non-standard crystal size					
CH8-30 – crystal length up to 30 mm						
CH8-30-y/y	Standard crystal sizes *					
CH8-30-y/z	Non-standard crystal size					
CH8-50 – crystal length up to 50 mm						
CH8-50-y/y	Standard crystal sizes *					
CH8-50-y/z	Non-standard crystal size					
MOUNTING ACCESSORIES						
MS-1	Two axis tilt adjustment 5 degrees range, suitable for all types of CH8 crystal ovens					
MS-2	Two axis tilt stage, adjustment in 5 degree range, fits two pc. of CH8 ovens					
POWER SUPPLY						
PS-12	Power supply for CH8 crystal oven, 100 – 240 VAC mains, +12 VDC output					
OPTIONAL EQUIPMENT						
CAN-USB	CAN-USB converter for adjustment of temperature at 30 – 80 °C range					


^{*} Sizes 3×3, 4×4, ..., 15×15 are standard.

RELATED PRODUCTS

Mounts for fine tuning of CH8 crystal ovens angle. The tuning range is $\pm 2.5^{\circ}$.

Mount MS-1 Mount MS-1 outline drawing

Mount MS-2 outline drawing

0

^{**} y/y, y/z – crystal size.

POCKELS CELLS

DRIVERS FOR POCKELS CELLS

Notes

EKSMA OPTICS c/o Optolita UAB Mokslininku str. 11, LT-08412 Vilnius, Lithuania Tel.: +370 5 272 99 00, Fax: +370 5 272 92 99

E-mail: info@eksmaoptics.com

www.eksmaoptics.com